

Hydro-ecology and river habitats

Implementation of the EU Water Framework Directive

Case Study Hungary/Austria

Emil Janák Director Győr/Hungary

The Blue Planet

MAJOR RIVERS and

MAJOR RIVER BASINS

in

EUROPE

Rhine Danube catchment area, the main navigation corridor

Szigetköz

1848-1795 fkm.

12 District Environment and Water Directorates Responsible for implementation of WFD

Central concept of the WFD is integration

of environmental objectives
of all water resources
of all water uses, functions and values
of disciplines
of water legislation
of all significant management and ecological
aspects

of a wide range of measures
of stakeholders and civil society
of different decision-making levels
of water management by different MemberStates

The biggest Challenge!

 We have to decrease the mistrust between the experts!

Technicians vs. Naturalists in implementation process?

Ecology chemistry engineering hydrology,

- hydraulics,
- soil sciences,
 - technology,

Who has the philosopher stone?

Participants and Partners

Two countries, different organizations (state, local authorities, universities, privat sector and civil organizations)

North-transdanubian Environment and Wate Directorate Fertő-Hanság National Park Directorate Hungarian Academy of Science Danube Researche Station Budapest University of Technology and Economics City of Győr City of Mosonmagyaróvár

Hullámvonal Engineer Ltd.

City of Vienna

University of Vienna

Water management cross border cooperation between H-A

Cross border tradition
Back to the 19th. century
1873 Rába River Regulation
Association
1955 Austria neutral state
1956 Hungarian-Austrian
Water Commission

Since 2000 based on River
Basins
and
Common implementation
of the EU Water Framework
Directive

First phase/First meeting The mistrust between disciplines

Second phase Common measurements

Hydrography Flows measuremets

- Gauging stations: level and temperature
- Flow measurements ADCP instrument
- Expeditional surveys water balance

45 types of habitats
Naturalness of the area

- 25 % natural
- 50 % natural-like
- 25% non natural

Fish biology

Native fish fauna species 49

Adventive species 13

New fauna element: Neogobius fluviatilis

Disappeared:

Huso huso

Acipenser gueldenstaedti

Acipenser nudiventris

Hydromorphology

Numerical modelling 2D modell

- 2 D modell Fast and slow zones
- Sallow and deep zones
- Whirling

Results:

- Habitat qualification
- Species distribution in space
- Flow conditions
- Residence times
- Hydraulic impact of riverbed regulation

Numerical modelling 3D modell

3D modell

- Space dimension
- Full current characterisation
- Whirling and twisting
- Turbulence conditions
- Results:
- Ecological potential backgrounds
- Movement of particals
- Current conditions of wiers
- Turbulenc conditions and flora/fauna

Physical modelling

Results:

- Dredging activities
- Fish-pass
- Recontruction works
- Sediment trap
- Services needs

Public participation

Third phase common thinking programme of measures

Utilization of the results by the partners

- Designation of the water bodies according to the WFD
- Planning of the monitoring systems
- Mosoni Danube HMWB verification
- Reference sites for HMWB
- Background data to rehabilitation
- Data to the operation of the Mosoni Danube
- Background to the river basin management planning
- Experience in internationa cooperation
- Coordination of different professional fields
- Public involvment

Lesson learned

Multidisciplinari tasks needs common understandings

International river basin needs trusts between parties

Sucessfull cooperation between ciliv engineers and naturalist results sustainable river basin planning

Participation of civil society is fundamental

Technical science –Natural science

Thank you for your attention

